Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(12): e0050522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35652664

RESUMO

Soil nitrogen (N) transformations constrain terrestrial net primary productivity and are driven by the activity of soil microorganisms. Free-living N fixation (FLNF) is an important soil N transformation and key N input to terrestrial systems, but the forms of N contributed to soil by FLNF are poorly understood. To address this knowledge gap, a focus on microorganisms and microbial scale processes is needed that links N-fixing bacteria and their contributed N sources to FLNF process rates. However, studying the activity of soil microorganisms in situ poses inherent challenges, including differences in sampling scale between microorganism and process rates, which can be addressed with culture-based studies and an emphasis on microbial-scale measurements. Culture conditions can differ significantly from soil conditions, so it also important that such studies include multiple culture conditions like liquid and solid media as proxies for soil environments like soil pore water and soil aggregate surfaces. Here we characterized extracellular N-containing metabolites produced by two common, diazotrophic soil bacteria in liquid and solid media, with or without N, across two sampling scales (bulk via GC-MS and spatially resolved via MALDI mass spec imaging). We found extracellular production of inorganic and organic N during FLNF, indicating terrestrial N contributions from FLNF occur in multiple forms not only as ammonium as previously thought. Extracellular metabolite profiles differed between liquid and solid media supporting previous work indicating environmental structure influences microbial function. Metabolite profiles also differed between sampling scales underscoring the need to quantify microbial scale conditions to accurately interpret microbial function. IMPORTANCE Free-living nitrogen-fixing bacteria contribute significantly to terrestrial nitrogen availability; however, the forms of nitrogen contributed by this process are poorly understood. This is in part because of inherent challenges to studying soil microorganisms in situ, such as vast differences in scale between microorganism and ecosystem and complexities of the soil system (e.g., opacity, chemical complexity). Thus, upscaling important ecosystem processes driven by soil microorganisms, like free-living nitrogen fixation, requires microbial-scale measurements in controlled systems. Our work generated bulk and spatially resolved measurements of nitrogen released during free-living nitrogen fixation under two contrasting growth conditions analogous to soil pores and aggregates. This work allowed us to determine that diverse forms of nitrogen are likely contributed to terrestrial systems by free-living nitrogen bacteria. We also demonstrated that microbial habitat (e.g., liquid versus solid media) alters microbial activity and that measurement of microbial activity is altered by sampling scale (e.g., bulk versus spatially resolved) highlighting the critical importance of quantifying microbial-scale processes to upscaling of ecosystem function.


Assuntos
Ecossistema , Fixação de Nitrogênio , Bactérias/metabolismo , Metaboloma , Nitrogênio/metabolismo , Solo/química , Microbiologia do Solo
2.
FEMS Microbiol Ecol ; 97(7)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34223869

RESUMO

Soil microorganisms play a key role in driving major biogeochemical cycles and in global responses to climate change. However, understanding and predicting the behavior and function of these microorganisms remains a grand challenge for soil ecology due in part to the microscale complexity of soils. It is becoming increasingly clear that understanding the microbial perspective is vital to accurately predicting global processes. Here, we discuss the microbial perspective including the microbial habitat as it relates to measurement and modeling of ecosystem processes. We argue that clearly defining and quantifying the size, distribution and sphere of influence of microhabitats is crucial to managing microbial activity at the ecosystem scale. This can be achieved using controlled and hierarchical sampling designs. Model microbial systems can provide key data needed to integrate microhabitats into ecosystem models, while adapting soil sampling schemes and statistical methods can allow us to collect microbially-focused data. Quantifying soil processes, like biogeochemical cycles, from a microbial perspective will allow us to more accurately predict soil functions and address long-standing unknowns in soil ecology.


Assuntos
Ecossistema , Solo , Mudança Climática , Ecologia , Microbiologia do Solo
3.
FEMS Microbiol Ecol ; 96(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33038234

RESUMO

Cellulosic bioenergy crops, like switchgrass (Panicum virgatum), have potential for growth on lands unsuitable for food production coupled with potential for climate mitigation. Sustainability of these systems lies in identifying conditions that promote high biomass yields on marginal lands under low-input agricultural practices. Associative nitrogen fixation (ANF) is a potentially important nitrogen (N) source for these crops, yet ANF contributions to plant N, especially under fertilizer N addition are unclear. In this study, we assess structure (nifH) and function (ANF) of switchgrass root-associated diazotrophic communities to long-term and short-term N additions using soil from three marginal land sites. ANF rates were variable and often unexpectedly high, sometimes 10× greater than reported in the literature, and did not respond in repeatable ways to long-term or short-term N. We found few impacts of N addition on root-associated diazotrophic community structure or membership. Instead, we found a very consistent root-associated diazotrophic community even though switchgrass seeds were germinated in soil from field sites with distinct diazotrophic communities. Ultimately, this work demonstrates that root-associated diazotrophic communities have the potential to contribute to switchgrass N demands, independent of N addition, and this may be driven by selection of the diazotrophic community by switchgrass roots.


Assuntos
Nitrogênio , Panicum , Fertilizantes/análise , Fixação de Nitrogênio , Microbiologia do Solo
5.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658971

RESUMO

Free-living nitrogen fixation (FLNF) in the rhizosphere, or N fixation by heterotrophic bacteria living on/near root surfaces, is ubiquitous and a significant source of N in some terrestrial systems. FLNF is also of interest in crop production as an alternative to chemical fertilizer, potentially reducing production costs and ameliorating negative environmental impacts of fertilizer N additions. Despite this interest, a mechanistic understanding of controls (e.g., carbon, oxygen, nitrogen, and nutrient availability) on FLNF in the rhizosphere is lacking but necessary. FLNF is distinct from and occurs under more diverse and dynamic conditions than symbiotic N fixation; therefore, predicting FLNF rates and understanding controls on FLNF has proven difficult. This has led to large gaps in our understanding of FLNF, and studies aimed at identifying controls on FLNF are needed. Here, we provide a mechanistic overview of FLNF, including how various controls may influence FLNF in the rhizosphere in comparison with symbiotic N fixation occurring in plant nodules where environmental conditions are moderated by the plant. We apply this knowledge to a real-world example, the bioenergy crop switchgrass (Panicum virgatum), to provide context of how FLNF may function in a managed system. We also highlight future challenges to assessing FLNF and understanding how FLNF functions in the environment and significantly contributes to plant N availability and productivity.


Assuntos
Bactérias/metabolismo , Fixação de Nitrogênio , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Panicum/microbiologia , Panicum/fisiologia , Rizosfera , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...